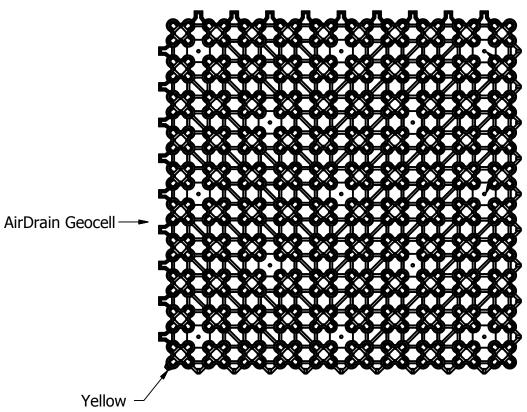

AirDrain_What drains better than Air?

Playground Drainage for 9 ft Fall Height

Not all drainage is created equal! AirDrain offers 100% vertical drainage and has 92% air void. This combination effectively collects and redirects water easily. Additionally, AirDrain raises the entire profile a full 1", letting gravity drain the entire playground quickly and efficiently. The combined effect of AirDrain is a more stable surface area, reduced expenses for repairs and more play time.

A drainage system should allow for water to quickly drain away from the surface and be directed to exit drains, thus allowing a shorter turnaround time for the continuation of play. AirDrain provides drainage which is unmatched in the industry – up to 40gpm/sf – allowing the surface to be free of water. AirDrain is only limited by the drainage capacity of the profile above and the capacity of the exit drains.

For playgrounds constructed with AirDrain the grid is installed on top of a 2.125" poly green foam pad which is placed directly onto the properly prepared subbase of concrete, asphalt or compacted aggregate. This creates a 1" air void and allows for maximum drainage.



Benefits of an AirDrain playground drainage system include:

- AirDrain raises the entire profile 1" off the subbase and brings gravity into play
- AirDrain's 92% air-void space allows for fast and easy water removal
- Consistent HIC and Gmax for the life of the AirDrain provides a safe play area
- AirDrain is a 100% recycled copolymer which has the impact modifier "metallocene" added to it for qualification as a "No Break" plastic, making it able to withstand extreme heat and cold and still maintain performance
- AirDrain's quick snap connectors allows for effortless installation
- Minimal site disturbance, excavation and disposal
- Compact shipping reduces transportation costs

*This drawing, specifications and the information contained herein is for general presentation purposes only. All final drawings and layouts should be determined by a licensed engineer(s). HIC & Gmax testing are measured in a lab setting and are not site specific.

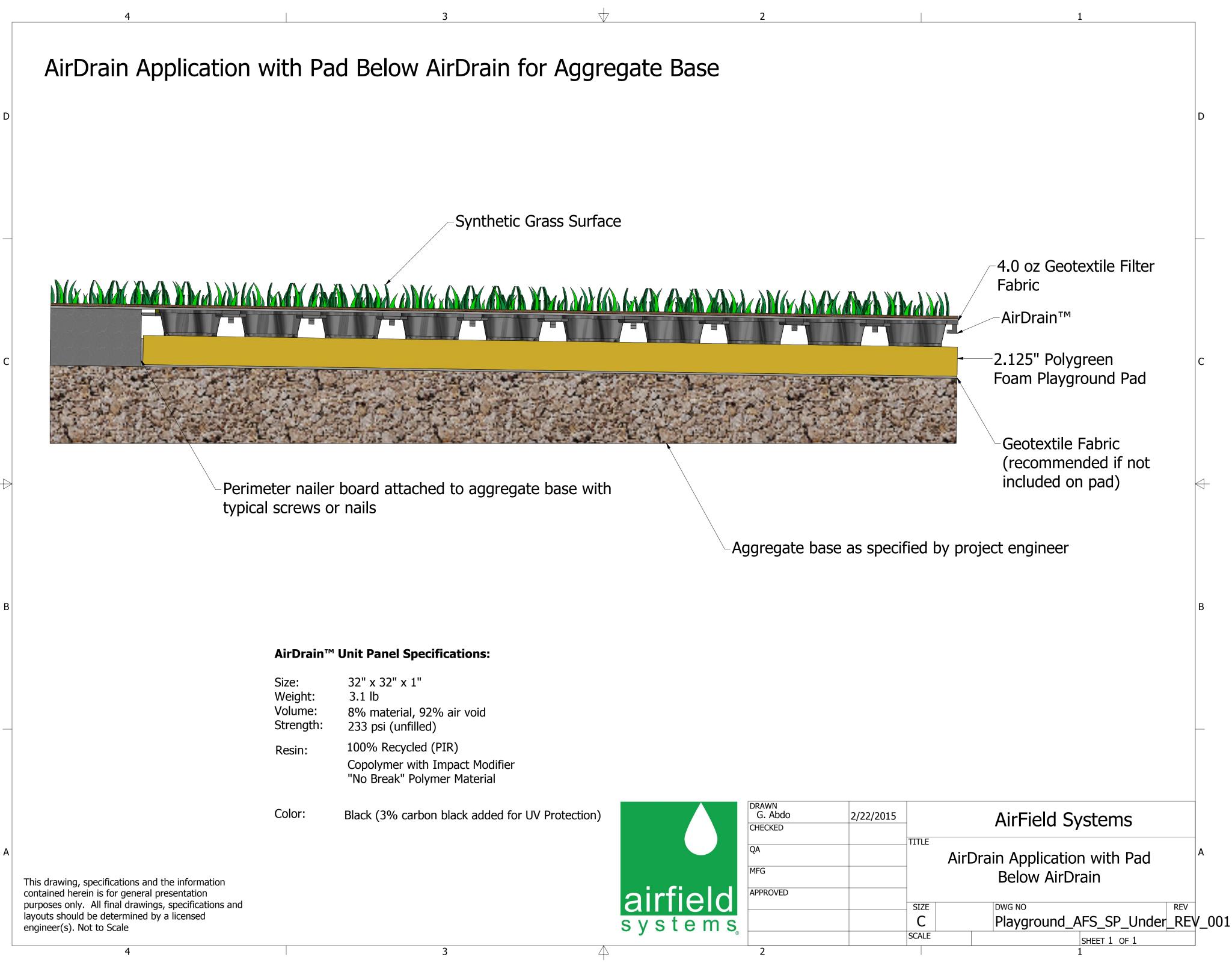
Indicator Tab

Unit Panel Specifications:

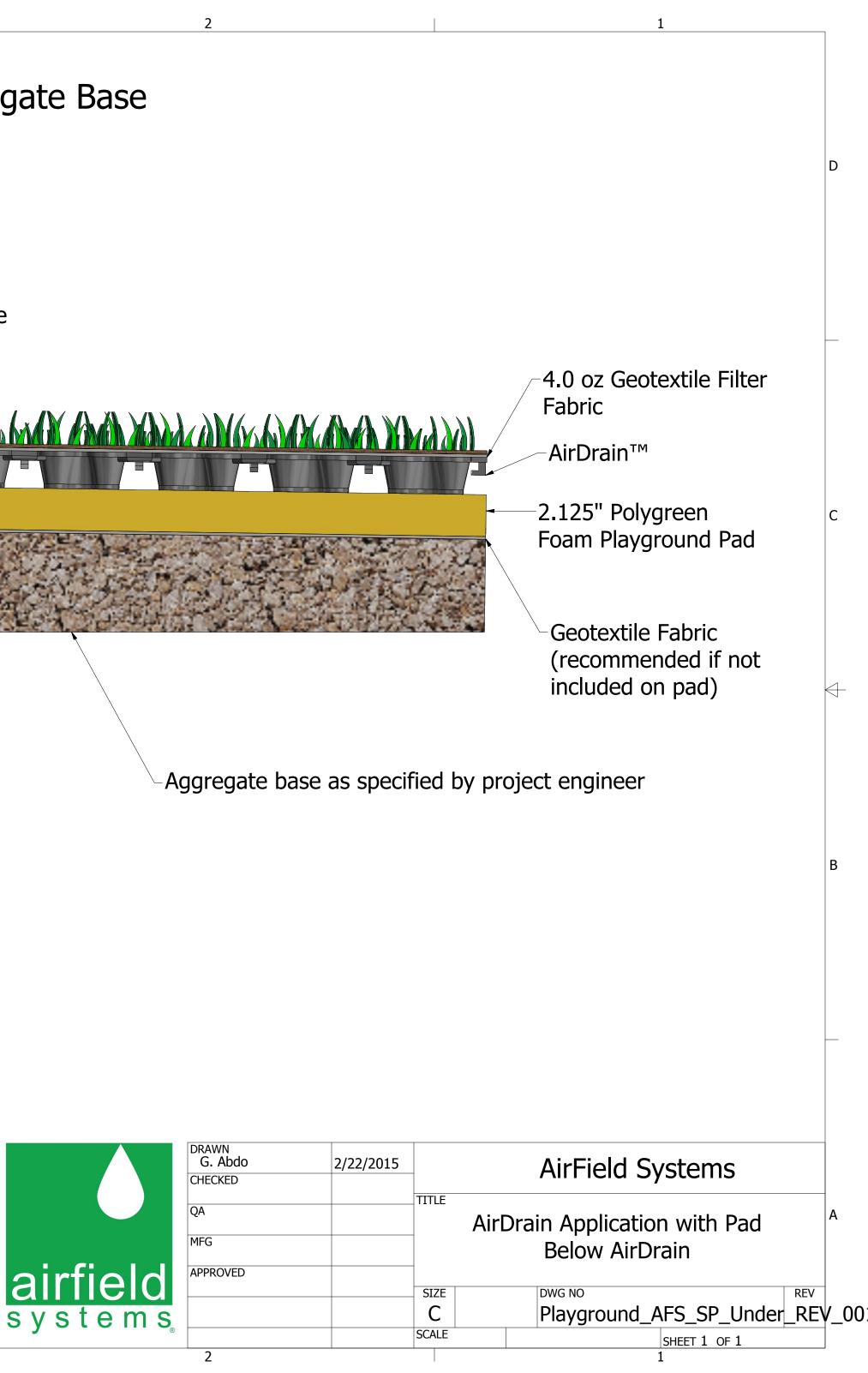
Size:	32" x 32" x 1"
Weight:	3.1 lb
Volume:	8% material, 92% air void
Strength:	233 psi (unfilled)
Resin:	100% Recycled (PIR) Copolymer with Impact Modifier "No Break" Polymer Material
Color:	Black (3% carbon black added for UV Protection)

AirDrain Cross Section

Scale 0.12:1


Typical

For AirDrain Grass Systems

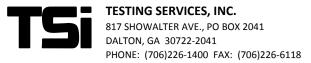


Airfield Systems, LLC 8028 N May Ave, Suite 201 Oklahoma City, OK 73120 (405) 359-3375

www.airfieldsystems.com

Size:	32" x 32" x 1"
Weight:	3.1 lb
Volume:	8% material, 92% air void
Strength:	233 psi (unfilled)
Resin:	100% Recycled (PIR) Copolymer with Impact Modifier "No Break" Polymer Material

TESTING SERVICES, INC. 817 SHOWALTER AVE., PO BOX 2041 DALTON, GA 30722-2041 PHONE: (706)226-1400 FAX: (706)226-6118

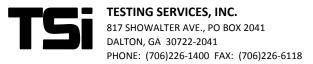

TEST REPORT

CLIENT:	Airfield Systems	REPORT NUMBER:	62296			
	8028 North May Avenue Suite 201	LAB TEST NUMBER:	2650-1155-1			
	Oklahoma City, OK 73120	DATE:	November 7, 2014			
REQUESTED BY:	Michael Bean	PAGE:	1 of 2			
Turf Description	ATS Turf 69sl/st		Тор			
Infill System	None		P			
Underlayment	8 oz Filter Fabric					
Grid:	AirDrain					
Pad System:	2 1/8" Polygreen Foam					
Sub Base	Concrete		Bottom			
Tested Dimension:	3' X 3'					
Impact Location:	Various					
Date of Receipt:	August 9, 2014					
Testing Period:	September 9-12, 2014					
Authorization:	Micheal Bean					
Test Procedure:	procedures outlined in AS	The submitted sample was evaluated for Shock Absorbing Properties in Accordance with the procedures outlined in ASTM F 1292-10; Standard Specification for Impact Attenuation of Surface Systems Under and Around Playground Equipment				
<u>Missle:</u>	Hemispherical (Triaxial Ac	celerometer): Total Drop Asser	nbly Weight (46g) 10 lbs			
Test Equipment:	Triax 2000 Surface Impact	tor 4/16/2014 by Alpha Automation	(Valid thru 5/16/2015)			
Sample Pre-Conditi	ion: 50±10 RH, 70F±5F for a r	minimum of 24 hrs piror to testin	g			
Temperature:		Maximum Drop Height That G a of 200 or Less and A HIC of 1				
Ambient, 61.7°F 38%	6 RH	9'				
Hot, 120°F (49°C)		9'				
Cold, 25°F (-6°C)		9'				
Critical Fall Height	(CFH):	9'				

Prepared and signed by:

Digitally signed by Erfe Miles, Jr. VP Dix: on-Erfe Miles, Jr. VP, o=Testing Services Inc., ou, email=sioffice@windstream.net, c=US Date: 2014.11.07 15:54:18.0500'

Erle Miles, Jr. VP Testing Services Inc.

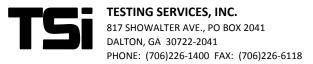


Client: Airfield Systems 8028 North May Avenue Suite 201 Oklahoma City, OK 73120

Test: ASTM F1292: Impact Attenuation of Surface Systems in and Around Playground Equipment

Turf ID	ATS Turf 6	i9sl/st			Тор			
Infill	None				- 1-			
Underlayment:	4 oz Filter	Fabric						
Grid:	AirDrain							
Underlayment:	-	yGreen Foam						
Sub Base:	Concrete	,			Botto	m		
				.	20110			
Conditions:	Ambient,	83°F 39% RH		Report #:		62197	Page #	2 of 4
Date Tested:	9-Sep-14			Fall Height	:	9'	Lab #	2650-1155-1
	•			0				
Drop Area:	Center of	Assembly						
	Drop #	Velocity ft/sec	Angle	Drop Ht/A	Actual	Drop Ht/Theoretical	Gmax	HIC
	1	23.9	7	9'		8.88	128	834
	2	23.9	0	9'		8.88	133	884
	3	23.9	0	9'		8.88	132	874
	Average			Drops	2, 3		133	879
	Quadrant	of Assembly						
	Drop #	Velocity ft/sec	Angle	Drop Ht/A	Actual	Drop Ht/Theoretical	Gmax	HIC
	1	23.9	3	9'		8.88	122	767
	2	23.9	2	9'		8.88	134	895
	3	23.9	1	9'		8.88	141	964
	Average			Drops	2, 3		138	930
	Quadrant	of Assembly						
	Drop #	Velocity ft/sec	Angle	Drop Ht/A	Actual	Drop Ht/Theoretical	Gmax	HIC
	1	23.9	0	9'		8.88	128	845
	2	23.9	4	9'		8.88	132	871
	3	23.9	3	9'		8.88	137	919
	Average			Drops	2, 3		135	895
	Quadrant	of Assembly						
	Drop #	Velocity ft/sec	Angle	Drop Ht/A	Actual	Drop Ht/Theoretical	Gmax	HIC
	1	N/A	N/A	N/A	N/A	#VALUE!	N/A	N/A
	2	N/A	N/A	N/A	N/A	#VALUE!	N/A	N/A
	3	N/A	N/A	N/A	N/A	#VALUE!	N/A	N/A
	Average			Drops	2, 3		#VALUE!	#VALUE!
	Overall on	nav (3 Locatio	ns Thre	Prons Fac	hloca	tion in Same Sno	+)	135

Overall gmax (3 Locations, Three Drops Each Location in Same Spot) Overall HIC (3 Locations, Three Drops Each Location in Same Spot) 135 901


Client: Airfield Systems 8028 North May Avenue Suite 201 Oklahoma City, OK 73120

Test: ASTM F1292: Impact Attenuation of Surface Systems in and Around Playground Equipment

Turf ID	ATS Turf 69	Əsl/st		Тор			
Infill	None	· · / · ·					
Underlayment:	4 oz Filter l	Fabric					
Grid:	AirDrain						
Underlayment:		Green Foam					
Sub Base:	Concrete	C reen round		Botto	m		
				• 2000			
Conditions:	Cold	Min 8hrs @	20°F	Report #:	62296	Page #	3 of 4
Date Tested:	10-Sep-14			Fall Height:	9'	Lab #	2650-1155-1
	·			0			
Drop Area:	Center of A	Assembly					
	Drop #	Velocity ft/sec	Angle	Drop Ht/Actual	Drop Ht/Theoretical	Gmax	HIC
	1	24.0	6	9'	8.95	123	799
	2	24.0	7	9'	8.95	131	858
	3	24.0	5	9'	8.95	136	885
	Average			Drops 2, 3		134	872
	Quadrant	of Assembly					
	Drop #	Velocity ft/sec	Angle	Drop Ht/Actual	Drop Ht/Theoretical	Gmax	HIC
	1	24.0	0	9'	8.95	133	908
	2	24.0	3	9'	8.95	140	972
	3	24.0	5	9'	8.95	147	1020
	Average			Drops 2, 3		144	996
	Quadrant	of Assembly					
	Drop #	Velocity ft/sec	Angle	Drop Ht/Actual	Drop Ht/Theoretical	Gmax	HIC
	1	24.0	7	9'	8.95	129	859
	2	24.0	3	9'	8.95	144	990
	3	24.0	2	9'	8.95	150	1027
	Average			Drops 2, 3		147	1009
	Quadrant	of Assembly					
	Drop #	Velocity ft/sec	Angle	Drop Ht/Actual	Drop Ht/Theoretical	Gmax	HIC
	1	23.9	7	9'	8.88	117	726
	2	24.0	3	9'	8.95	124	786
	3	24.0	2	9'	8.95	132	848
	Average			Drops 2, 3		128	817
	Overall gm	ax (4 Locatio	ns, Thre	e Drops Each Loca	ition in Same Spo	t)	138

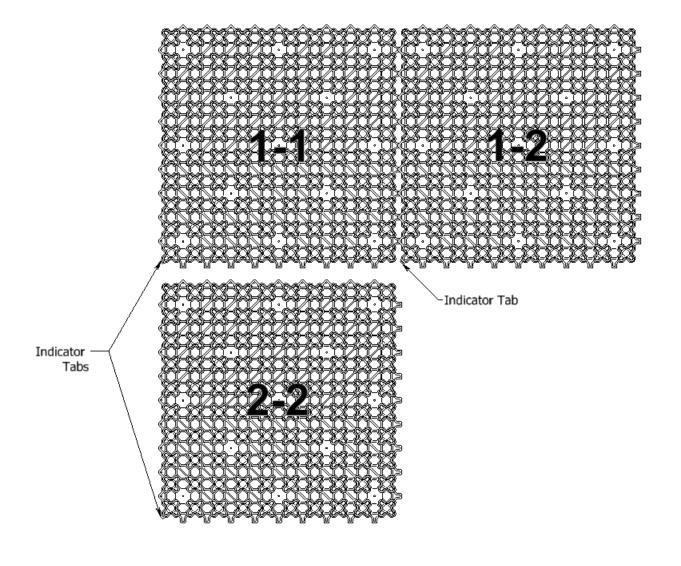
Overall gmax (4 Locations, Three Drops Each Location in Same Spot) Overall HIC (4 Locations, Three Drops Each Location in Same Spot)

923

Client: Airfield Systems 8028 North May Avenue Suite 201 Oklahoma City, OK 73120

Test: ASTM F1292: Impact Attenuation of Surface Systems in and Around Playground Equipment

Turf ID	ATS Turf 6	9sl/st		Тор			
Infill	None						
Underlayment:	4 oz Filter	Fabric					
Grid:	AirDrain						
Underlayment:	2 1/8" Pol	yGreen Foam					
Sub Base:	Concrete			Botto	m		
				·			
Conditions:	Hot	Min 8 hrs @	9 120°F	Report #:	62197	Page #	4 of 4
Date Tested:	11-Sep-14			Fall Height:	9'	Lab #	2650-1155-1
Drop Area:	Center of	Assembly					
·	Drop #	Velocity ft/sec	Angle	Drop Ht/Actual	Drop Ht/Theoretical	Gmax	HIC
	1	24.0	7	9'	8.95	126	815
	2	24.0	6	9'	8.95	133	868
	3	24.1	3	9'	9.03	129	833
	Average			Drops 2, 3		131	851
	Quadrant	of Assembly					
	Drop #	Velocity ft/sec	Angle	Drop Ht/Actual	Drop Ht/Theoretical	Gmax	HIC
	1	24.0	5	9'	8.95	130	859
	2	24.0	3	9'	8.95	134	882
	3	24.0	0	9'	8.95	135	895
	Average			Drops 2, 3		135	889
	Quadrant	of Assembly					
	Drop #	Velocity ft/sec	Angle	Drop Ht/Actual	Drop Ht/Theoretical	Gmax	HIC
	1	23.9	8	9'	8.88	120	766
	2	24.0	8	9'	8.95	131	862
	3	23.9	1	9'	8.88	129	851
	Average			Drops 2, 3		130	857
	Quadrant	of Assembly					
	Drop #	Velocity ft/sec	Angle	Drop Ht/Actual	Drop Ht/Theoretical	Gmax	HIC
	1	N/A	N/A	N/A	#VALUE!	N/A	N/A
	2	N/A	N/A	N/A	#VALUE!	N/A	N/A
	3	N/A	N/A	N/A	#VALUE!	N/A	N/A
	Average			Drops 2, 3		#VALUE!	#VALUE!


Overall gmax (4 Locations, Three Drops Each Location in Same Spot) Overall HIC (4 Locations, Three Drops Each Location in Same Spot) 132 866

Proper Sequencing and Orientation of AirDrain GeoCell Panels for Rapid Installation

Pallet Staging: AirDrain pallets cover approximately 798sqft. per pallet and should be staged accordingly within the installation area to minimize the amount of time to stage the AirDrain grid. AirDrain pallets are typically placed every 65 feet across and 15-20 feet back from each other. (Call AirField with questions that you might have about proper staging and installation.)

All Installations must start in the Top Left Corner of the Field and work Left to Right to be installed properly.

 Orientate the AirDrain GeoCell materials with the integral indicator tab to the panel's bottom left corner (painted yellow). Install the AirDrain units by placing units with the connectors and platforms up to create a flat surface for the profile above. If the male connectors do not fall or drop into the female connectors then the orientation is incorrect. Please call AirField Systems Immediately at 405-359-3775.

- 2. Install the AirDrain panels across the field in a rowed pattern. Staggering of rows will allow for multiple row completion by a multi-manned crew.
- 3. Once the first row has progressed across the project, start with a second row. Have a person staging the panels in groups of three snapped together along the row. The crew can then install the left side of the panel while elevating slightly the top portion (so the male and female connectors don't touch each other). Once the left side has been snapped with a pull along the row direction, the top portion should fall into place and with a bottom vertical pull holding the inside of parts 1 & 3 snap all three parts in place.

- 4. AirDrain panels can be shaped to individual field areas as needed with appropriate cutting device. If a typical field is installed correctly there should only be two sides that would need to be trimmed.
 - A. If only a few parts need to be trimmed, use tin snips.
 - B. If many parts require trimming, set up a table and use a circular saw with a no melt, plastic cutting saw blade.

Visit <u>AirField Systems Flickr page</u> to watch a video of a 74,000 sq ft project for Chesapeake Energy illustrating a 3 man crew installation.

DISCLAIMER: The preceding and following drawings and/or general installation guidelines are provided only to show a concept design for installation and are not instructions for any particular installation. These drawings and general instructions are not complete and are provided only to assist a licensed Geo-Technical Engineer, a Landscape Architect and/or Civil Engineer in preparing actual construction and installation plans. These drawings and instructions must be reviewed by a licensed Geo-Technical Engineer, a Landscape Architect and/or Civil Engineer in preparing actual construction and installation plans. These drawings and instructions must be reviewed by a licensed Geo-Technical Engineer, a Landscape Architect and/or Civil Engineer and adapted to the condition of a particular installation site and to comply with all state and local requirements for each installation site. THESE DRAWINGS AND/OR GENERAL INSTRUCTIONS DO NOT MODIFY OR SUPPLEMENT ANY EXPRESS OR IMPLIED WARRANTIES INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, IF APPLICABLE RELATING TO THE PRODUCT.

	General Information						
General							
Construction	Injection Molded Copolymer						
Composition	Copolymer Polypropylene Using an Impact Modifier						
Dimensions	31.784" x 31.880" x 1.000" (7.03 sq ft.)						
Unit Weight	3.1 lbs.						
Material	Resin Pellets						
Shipping							
Parts Per Pallet	114						
Pallet Dimensions	33" x 33" x 48"						
Pallet Weight	390 lbs.						
Area Coverage Per Pallet	798 sq. ft.						
Pallets Per Trailer	114 (3 wide x 2 tall x 19 deep)						
Area Covered Per Trailer	90,972 sq. ft.						
	ASTM and ISO Prope	erties ¹					
Physical		Nominal Value	Test Method				
Specific Gravity		0.940	ASTM D792				
Melt Mass-Flow Rate (230°C/2	.16 kg)	20 g/10 min	ASTM D1238				
Mechanical		Nominal Value	Test Method				
Density		57.490 lb/ft ³	ASTM D1505				
Tensile Strength (Yield, 73°F)		2,145 psi	ASTM D638				
Tensile Elongation (Yield, 73°F	·)	16%	ASTM D638				
Flexural Modulus (73°F)		100,175 psi	ASTM D790				
Compression Strength (73°F)		233 psi unfilled	ASTM D6254				
Impact		Nominal Value	Test Method				
Notched Izod Impact (73°F, 0.1	25 in)		ASTM D256				
Thermal		Nominal Value	Test Method				
Deflection Temperature Under	Load 264 psi, Unannealed	160°F	ASTM D648				
	Expansion/Contraction	Index ¹					
Temperature	Humidity	Length	Width				
100°F	98%	31.881"	31.817"				
-5°F	0%	31.765"	31.713"				
Change		.116"	.104"				
Joint Expansion/Contraction Ca	pacity	.420"	.572"				
Safety Factor		362%	550%				
Examples of Usage							
Application	Required Strength	Safety	Safety Factor				
Auto	40 psi	x 1	68				
Truck 110 psi x 61							

¹ Independent laboratory testing conducted by TRI/Environmental, Inc., TSI/Testing Services, Inc. and Wassenaar.

100% Post Manufactured Content

Recycled

The **AirDrain** GeoGrid is made of 100% post-manufactured material, you can feel good about helping the planet <u>while adding valuable LEED Points</u> to your project! We also add an impact modifier for incredible strength and superior performance in extreme heat and cold - on top of the already durable **AirDrain** design.

AirDrain Co-Polymer with an Impact Modifier Performance and Temperature Durability

Attached you will find the specification of the resin used to produce both the 32 x 32 and the 32 x 18 Geo cells. This material is a co-polymer polypropylene that is 100% recycled resin. In order to be able to produce a consistent recycled resin a PIR (post industrial resin) is used for the base resin. This is the only way to produce a consistent material as opposed to a PCR (post consumer resin) which is dependent on the consumer to supply a consistent material. Using the PIR as a base resin 3% carbon black is added to insure good UV stabilization and metallocene (an ethylene base material) is used as an impact modifier.

Impact Modifier

The impact modifier is added in an amount to achieve a 10.0 Notched Izod Impact which comfortably qualifies this material as a NO BREAK material (4.0 and greater are normally considered no break material). The **AirDrain** resin offers an advantage over many ethylene and HDPE products since the **AirDrain** resin is often superior when it comes to pliability, warping and internal stress related issues. Referring to the attached specification sheet you will notice that all testing is done to specific ASTM Standards.

Resin Blends

AirDrain's blend of resins gives it the ability to perform in extreme temperatures. **AirDrain** does not need a temperature above 50 degrees Fahrenheit to be installed or warmed in the sun to be pliable on site for install. In addition, **AirDrain's** unique resin blend also helps prevent breakage and cracking in extreme temperatures, thus giving it the ability to withstand repeated freeze thaw cycles.

Airfield posts its resin content and performance values with ASTM test methods and guide lines to measure the properties of our grid.